jagomart
digital resources
picture1_Calculus Pdf 170893 | Calculus4lecturenotes


 162x       Filetype PDF       File size 0.59 MB       Source: www2.cedarcrest.edu


File: Calculus Pdf 170893 | Calculus4lecturenotes
cedar crest college calculus iv lecture notes author e mail address james hammer jmhammer cedarcrest edu july 4 2015 preface this is meant as a teaching aid it can be ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
                Cedar Crest College
                     Calculus IV
                    Lecture Notes
          Author:                E-Mail Address:
          James Hammer      jmhammer@cedarcrest.edu
                       July 4, 2015
         Preface
       This is meant as a teaching aid. It can be freely distributed and
                                A
       edited in any way. For a copy of the LT X document, please email
                                 E
       the author. These notes are adapted from James Stewart’s Calculus:
       Early Transcendentals Eighth Edition.
                             ii
                Contents
                12 Vectors and the Geometry of Space                                                                 1
                    12.1 Operations in 3-Space       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     1
                          12.1.1 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        1
                          12.1.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       2
                          12.1.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        3
                    12.2 Equations in 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          5
                    12.3 Cylinders and Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . .            7
                13 Vector Functions                                                                                 11
                    13.1 Vector Functions and Space Curves . . . . . . . . . . . . . . . . . . . . . . .            11
                    13.2 Derivatives and Integrals of Vector Functions . . . . . . . . . . . . . . . . . .          14
                          13.2.1 Derivatives     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    14
                          13.2.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      15
                    13.3 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . .           16
                          13.3.1 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         16
                          13.3.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        17
                          13.3.3 Normal and Bi-normal Vectors . . . . . . . . . . . . . . . . . . . . . .           18
                    13.4 Motion in Space, Velocity, and Acceleration          . . . . . . . . . . . . . . . . . .   20
                14 Partial Derivatives                                                                              21
                    14.1 Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . .         21
                          14.1.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . .           21
                          14.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       22
                          14.1.3 Level Curves      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    23
                    14.2 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          24
                    14.3 Partial Derivatives     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    27
                          14.3.1 First Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . .        27
                          14.3.2 Higher Order Partial Derivatives        . . . . . . . . . . . . . . . . . . . .    28
                    14.4 Tangent Planes & Linear Approximation . . . . . . . . . . . . . . . . . . . .              29
                    14.5 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         31
                          14.5.1 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         31
                          14.5.2 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . .        33
                    14.6 Directional Derivatives & Gradient Vector . . . . . . . . . . . . . . . . . . .            34
                    14.7 Maximum & Minimum Values . . . . . . . . . . . . . . . . . . . . . . . . . .               36
                          14.7.1 Local Extrema       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    36
                                                                  iii
                         14.7.2 Absolute Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      38
                   14.8 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      39
                15 Multiple Integrals                                                                          41
                   15.1 Double Integrals over a Rectangle . . . . . . . . . . . . . . . . . . . . . . . .       41
                         15.1.1 Volumes as Double Integrals . . . . . . . . . . . . . . . . . . . . . . .       41
                   15.2 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    43
                   15.3 Double Integrals over General Regions        . . . . . . . . . . . . . . . . . . . . .  46
                         15.3.1 Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    46
                         15.3.2 Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    46
                   15.10Change of Variables in Multiple Integrals . . . . . . . . . . . . . . . . . . . .       49
                   15.4 Double Integrals in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . .       51
                         15.4.1 Crash Course in Polar Coordinates . . . . . . . . . . . . . . . . . . .         51
                         15.4.2 Double Integrals with Polar Coordinates . . . . . . . . . . . . . . . .         53
                   15.7 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    58
                   15.8 Triple Integrals in Cylindrical Coordinates . . . . . . . . . . . . . . . . . . .       59
                   15.9 Triple Integrals in Spherical Coordinates . . . . . . . . . . . . . . . . . . . .       61
                16 Vector Calculus                                                                             65
                   16.1 Vector Fields     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
                   16.2 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    68
                         16.2.1 Line Integrals in the Plane . . . . . . . . . . . . . . . . . . . . . . . .     68
                         16.2.2 Line Integrals in Space . . . . . . . . . . . . . . . . . . . . . . . . . .     71
                         16.2.3 Line Integrals of Vector Fields . . . . . . . . . . . . . . . . . . . . . .     72
                   16.3 The Fundamental Theorem of Line Integrals . . . . . . . . . . . . . . . . . .           73
                   16.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       77
                   16.5 Curl and Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       80
                         16.5.1 Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    80
                         16.5.2 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    82
                         16.5.3 Vector Forms of Green’s Theorem . . . . . . . . . . . . . . . . . . . .         83
                   16.6 Parametric Surfaces and Their Areas . . . . . . . . . . . . . . . . . . . . . .         84
                         16.6.1 Parametric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .     84
                         16.6.2 Surface of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . .     86
                         16.6.3 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      86
                         16.6.4 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    87
                   16.7 Surface Integrals    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
                   16.8 Stokes’ Theorem      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
                                                                iv
The words contained in this file might help you see if this file matches what you are looking for:

...Cedar crest college calculus iv lecture notes author e mail address james hammer jmhammer cedarcrest edu july preface this is meant as a teaching aid it can be freely distributed and edited in any way for copy of the lt x document please email these are adapted from stewart s early transcendentals eighth edition ii contents vectors geometry space operations points equations cylinders quadric surfaces vector functions curves derivatives integrals arc length curvature normal bi motion velocity acceleration partial several variables domain range graphs level limits continuity first order higher tangent planes linear approximation chain rule implicit dierentiation directional gradient maximum minimum values local extrema iii absolute lagrange multipliers multiple double over rectangle volumes iterated general regions type change polar coordinates crash course with triple cylindrical spherical fields line plane fundamental theorem green curl divergence forms parametric their areas surface r...

no reviews yet
Please Login to review.