137x Filetype PDF File size 0.06 MB Source: websites.uwlax.edu
16.5 and 16.6: Surfaces, Area, and Surface Integrals E. Kim Notation follows Thomas’ Calculus: Early Transcendentals (12th Edition) as closely as possible Parametric form Suppose r(u,v) = f(u,v)i + g(u,v)j + h(u,v)k with bounds a ≤ u ≤ b and c ≤ v ≤ d defines a surface S. • The region R: the region in uv-space: a ≤ u ≤ b and c ≤ v ≤ d. • Surface area differential: dσ = kr ×r k dudv. u v • Surface area integral: ¨ dσ=¨ kru×rvkdudv=ˆ dˆ bkru×rvkdudv. S R c a • General integral: To integrate G(x,y,z) over S, ¨ ¨ S G(x,y,z)dσ = RG f(u,v),g(u,v),h(u,v) kru ×rvk dudv. Implicit form Sisthesetofpoints(x,y,z)suchthatF(x,y,z) = 0forsomefunctionF(x,y,z) • The region R: the projection of the surface S onto the xy-plane (then p=k). Or,theprojectionofthesurfaceS ontothexz-plane(thenp = j). Or, the projection of the surface S onto the yz-plane (then p = i). • Surface area differential: dσ = k∇Fk dA. Here, dA = dxdy if p = k. |∇F·p| • Surface area integral: ¨ dσ=¨ k∇Fk dA. S R |∇F ·p| • General integral: To integrate G(x,y,z) over S, ¨ G(x,y,z)dσ =¨ G(x,y,z) k∇Fk dA. S R |∇F ·p| Explicit form S is the set of points (x,y,z) such that z = f(x,y). That is, we look at the graph of some function f. • TheregionR: We’llusuallyneedtopickaboundedsubsetofthedomain space. That’s R. p 2 2 • Surface area differential: dσ = fx +fy +1 dxdy • Surface area integral: ¨ ¨ q 2 2 dσ = fx +fy +1 dxdy. S R • General integral: To integrate G(x,y,z) over S, ¨ G(x,y,z)dσ =¨ G(x,y,f(x,y))qf 2+f 2+1 dxdy. x y S R
no reviews yet
Please Login to review.