jagomart
digital resources
picture1_Matrix Pdf 172778 | Mathmatical Physics Chapter 7


 121x       Filetype PDF       File size 0.52 MB       Source: fac.ksu.edu.sa


File: Matrix Pdf 172778 | Mathmatical Physics Chapter 7
chapter 7 eigenvalues and eigenvectors 7 1 eigenvalues and eigenvectors 7 2 diagonalization 7 1 eigenvalues and eigenvectors eigenvalue problem n if a is an nn matrix do there exist ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                Chapter 7 
      Eigenvalues and Eigenvectors
       7.1  Eigenvalues and Eigenvectors
       7.2  Diagonalization
       7.1 Eigenvalues and Eigenvectors
      Eigenvalue problem:
                                                                                   n
            If A is an nn matrix, do there exist nonzero vectors x in R
            such that Ax is a scalar multiple of x?
      Eigenvalue and eigenvector:                    Geometrical Interpretation
            A:an nn matrix
            :a scalar
                                            n
            x:a nonzero vector in R
                      Eigenvalue
                Ax x
                Eigenvector
                                                                                      1/53
       Ex 1:  (Verifying eigenvalues and eigenvectors)
                     2     0
                                       1             0
              A                  x   x  
                                 1             2
                                                     
                     0 1                0             1
                                                     
                            
                                                Eigenvalue
                       2     0    1       2         1
              Ax                   2   2x
                 1                                           1
                                             
                       0 1 0             0         0
                                             
                                                  Eigenvector
                                                   Eigenvalue
                       2     0     0       0           0
                                                 
              Ax                              1        (1)x
                 2                                                   2
                                                 
                       0 1 1             1           1
                                                 
                                                      Eigenvector
                                                                                              2/53
       Thm 7.1: (The eigenspace of A corresponding to )
            If A is an nn matrix with an eigenvalue , then the set of all 
            eigenvectors of  together with the zero vector is a subspace of 
              n
            R . This subspace is called the eigenspace of  .
       Pf:
             x1 and x2 are eigenvectors corresponding to 
             (i.e.  Ax  x ,  Ax x )
                      1       1      2       2
            (1) A(x  x )  Ax  Ax x x (x x )
                     1     2         1       2      1       2        1     2
                  (i.e.  x  x  is an eigenvector corresponding to λ)
                        1     2
            (2) A(cx ) c(Ax ) c(x ) (cx )
                       1           1          1           1
                 (i.e.  cx  is an eigenvector corresponding to )
                         1
                                                                                               3/53
The words contained in this file might help you see if this file matches what you are looking for:

...Chapter eigenvalues and eigenvectors diagonalization eigenvalue problem n if a is an nn matrix do there exist nonzero vectors x in r such that ax scalar multiple of eigenvector geometrical interpretation aan xa vector ex verifying thm the eigenspace corresponding to with then set all together zero subspace this called pf are i e cx c...

no reviews yet
Please Login to review.