120x Filetype PDF File size 1.85 MB Source: scholar.harvard.edu
Math 220H Notes Matrices 1 Joel C. Miller Spring 2013 — last updated Tuesday 21st May, 2013 1 c Joel C. Miller — Only for use by students of the Spring 2013 M220H course or by permission of author. If you ask for permission to use these notes, you will probably receive it. But please ask. Things to add:Theorem stating that null space of any I began writing these notes while teaching M220H (Honors Matrices) during the spring 2012 semester at linear operator is a vector Penn State University. It was a much larger endeavor than I had anticipated, but now that I have these space notes, I hope to refine them and produce a better course for 2013. Please be aware that the examples I use in these notes will be different from the examples presented in lecture. The goal of this is to give you a few more examples to look at. Anunfortunate consequence of having a course taught out of lecture notes designed by the instructor is that you may end up with a narrow perspective of the subject. I will tend to teach how to solve problems the way I think about them, and this same emphasis will show up in my notes. There are other ways to teach many of these concepts, so when things aren’t clear, come talk to me and I’ll do my best to help. When I taught the course in 2012, the official text was Lay 4th edition. In these notes, when I refer to “the text”, this is what I’m talking about. You can buy it if you’d like, or borrow it from someone, or go without. I started writing these notes because I didn’t think it was a good textbook for an honors course. I’m not going to use it or expect you to have it. Unlike most textbooks, you’ll notice that the exercises are scattered through the notes rather than at the end of a chapter. Generally the exercise is put somewhere to illustrate a point that is being made, or because the method to solve it has just been introduced. If you’re having trouble with an exercise, the first step is to look at what appears just before it. st 2–Tuesday 21 May, 2013, 15:07 Contents 1 Introduction 7 1.1 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Introductory comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Comments on proof technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Linearity (sec 1.8 of text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Matrices and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Vectors (sec 1.3 of text — up to pg 30) . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 Matrices (sec 1.9 of text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.3 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.4 Matrix Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Linearity and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.1 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.6.2 Iterative time stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7 Matlab/Octave/Python comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.8 Ashort review of linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 Vector Spaces 39 2.1 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.1 Special Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5 Bases (sections 2.8-2.9 and 4.3-4.4 of text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6 Showing something is a vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 3 Systems of Linear Equations 57 3.1 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Pivot positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Column space and Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5 Onto and one-to-one functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 The “Onto” game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5.2 The one-to-one game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 Column Space and Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.6.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Invertible Matrices 83 4.1 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Finding inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Matrix calculations with invertible matrices . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 The Invertible Matrix Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 Inner Products and Orthogonality 101 5.1 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.1 Vector Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.2 General Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.1 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.2 Orthogonal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.3 Magnitude of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.4 Approximation/Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.5 Creating an orthogonal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 Eigenvalues and Eigenvectors 117 6.1 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Other resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 st 4–Tuesday 21 May, 2013, 15:07
no reviews yet
Please Login to review.