100x Filetype PDF File size 0.08 MB Source: www.math.wsu.edu
PRECALCREVIEW:MODELINGwithFUNCTIONSII Modeling with Inverse Functions : needtofindwhenmodelpredictssomevalue. • Inverse Functions Basic Ideas: given y = f(x), inverse function is x = f−1(y). Issues for f−1(y): domain and range ?, uniqueness?, explicit form? • Modeling Example (1.6.36): if shrew population growth rate F as function of cocoon density C is F = .055(220C − 11000)/(320C), find C(F) and C(.02)? • Modeling Example (1.R.16): if pollution level P in Lake Bowegan as function of time t in days is P = 25 − 15cos(2πt/365), find t(P) and t(40)? 2 PRECALCREVIEW:MODELINGwithFUNCTIONS • Log Functions as Inverse Functions: basic form y = logb(x), for b > 0. What is inverse function? Commonvs. Natural logs? y Basic properties: logb(xy) =?, logb(x/y) =?, logb(x ) =?, base change? ModelingExample(1.6.38): ifMexicanpopulationmodelisP(t) = 67.38(1.026)t, find t(P) and doubling time. 3 PRECALCREVIEW:MODELINGwithLOGFUNCTIONS m • Log-LogPlotsandDataFitting: givenx,y data, find“best-fit” function y = kx . Example: River Object Diameter vs Transport Speed (text 1.6.44) 3.5 3 2.5 2 1.5 1 0.5 00 20 40 60 80 100 120 140 160 180 Solution: take logs and find best fit line for “log-log” data 4 PRECALCREVIEW:MODELINGwithLOGFUNCTIONS Example: River Object Diameter vs Speed (1.6.44) Log-Log Plot River Object Data Log−Log Plot 1.5 1 0.5 0 −0.5 Log of Current Speed−1 −1.5 −2 −2.5 −2 −1 0 1 2 3 4 5 6 Log of Object Diameter Matlab: x = [.2 1.3 5 11 20 45 80 180 ]; y = [.1 .25 .5 .75 1 1.5 2.5 3.5 ]; plot(log(x),log(y),’*’) title(’River Object Data Log-Log Plot’)
no reviews yet
Please Login to review.